Simulate radar signals to train machine and deep learning models for target and signal classification.
With MATLAB® and Simulink®, you can:
- Label signals collected from radar systems using the Signal Labeler app
- Augment datasets by simulating radar waveforms and echoes from objects with a range of radar cross sections
- Simulate micro-Doppler signatures of hand gestures and animated objects with non-rigid bodies such as helicopters, pedestrians, and bicyclists
- Apply identification and classification workflows to public datasets
Why use AI for Radar?
Synthesize radar signals to train machine and deep learning models for target and signal classification and apply AI techniques to data collected from radar systems.
Waveform Classification and Spectrum Sensing
Synthesize and label radar waveforms to train deep learning networks. Extract time-frequency features from signals and perform waveform modulation classification using deep learning networks. Determine bandwidth of occupied signals.
Radar Target Classification
Classify radar returns based on radar cross sections with both machine and deep learning approaches. The machine learning approach uses wavelet scattering feature extraction coupled with a support vector machine. Two common deep learning approaches are transfer learning using SqueezeNet and a Long Short-Term Memory (LSTM) recurrent neural network.
Hand Gesture Classification
Classify ultra-wideband (UWB) impulse radar signal data from a publicly available dataset of dynamic hand gestures. Use a multiple-input, single-output convolutional neural network (CNN) where the CNN model extracts feature information from each signal before combining it to make a final gesture label prediction.
Micro-Doppler Signature Classification
Classify pedestrians and bicyclists based on their micro-Doppler characteristics using time-frequency analysis and a deep learning network. The movements of different parts of an object placed in front of a radar produce micro-Doppler signatures that can be used to identify the object.
SAR Image Classification
Use deep learning techniques for target classification of Synthetic Aperture Radar (SAR) images. Create and train a Convolution Neural Network (CNN) to classify SAR targets from the Moving and Stationary Target Acquisition and Recognition (MSTAR) Mixed Targets dataset.
SAR Image Recognition
Perform target recognition of Synthetic Aperture Radar (SAR) images using a Region-based Convolutional Neural Networks (R-CNN). The R-CNN network integrates detection and recognition with efficient performance that scales to large scene SAR images.