ecmnstd
Standard errors for mean and covariance of incomplete data
Description
[
computes standard errors for mean and covariance of incomplete data. StdMean
,StdCovar
] = ecmnstd(Data
,Mean
,Covariance
)
Use ecmnstd
after estimating the mean and
covariance of Data
with ecmnmle
. If
the mean and distinct covariance elements are treated as the
parameter θ in a complete-data maximum-likelihood
estimation, then as the number of samples increases,
θ attains asymptotic normality such
that
where E[θ] is the mean and I(θ) is the Fisher information matrix.
With missing data, the Hessian H(θ) is a good approximation for the Fisher information (which can only be approximated when data is missing).
Examples
Compute Standard Errors for Mean and Covariance of Incomplete Data
This example shows how to compute the standard errors for mean and covariance of incomplete data for five years of daily total return data for 12 computer technology stocks, with six hardware and six software companies
load ecmtechdemo.mat
The time period for this data extends from April 19, 2000 to April 18, 2005. The sixth stock in Assets is Google (GOOG), which started trading on August 19, 2004. So, all returns before August 20, 2004 are missing and represented as NaN
s. Also, Amazon (AMZN) had a few days with missing values scattered throughout the past five years.
[ECMMean, ECMCovar] = ecmnmle(Data)
ECMMean = 12×1
0.0008
0.0008
-0.0005
0.0002
0.0011
0.0038
-0.0003
-0.0000
-0.0003
-0.0000
⋮
ECMCovar = 12×12
0.0012 0.0005 0.0006 0.0005 0.0005 0.0003 0.0005 0.0003 0.0006 0.0003 0.0005 0.0006
0.0005 0.0024 0.0007 0.0006 0.0010 0.0004 0.0005 0.0003 0.0006 0.0004 0.0006 0.0012
0.0006 0.0007 0.0013 0.0007 0.0007 0.0003 0.0006 0.0004 0.0008 0.0005 0.0008 0.0008
0.0005 0.0006 0.0007 0.0009 0.0006 0.0002 0.0005 0.0003 0.0007 0.0004 0.0005 0.0007
0.0005 0.0010 0.0007 0.0006 0.0016 0.0006 0.0005 0.0003 0.0006 0.0004 0.0007 0.0011
0.0003 0.0004 0.0003 0.0002 0.0006 0.0022 0.0001 0.0002 0.0002 0.0001 0.0003 0.0016
0.0005 0.0005 0.0006 0.0005 0.0005 0.0001 0.0009 0.0003 0.0005 0.0004 0.0005 0.0006
0.0003 0.0003 0.0004 0.0003 0.0003 0.0002 0.0003 0.0005 0.0004 0.0003 0.0004 0.0004
0.0006 0.0006 0.0008 0.0007 0.0006 0.0002 0.0005 0.0004 0.0011 0.0005 0.0007 0.0007
0.0003 0.0004 0.0005 0.0004 0.0004 0.0001 0.0004 0.0003 0.0005 0.0006 0.0004 0.0005
⋮
To evaluate the impact of the estimation error and, in particular, the effect of missing data, use ecmnstd
to calculate standard errors. Although it is possible to estimate the standard errors for both the mean and covariance, the standard errors for the mean estimates alone are usually the main quantities of interest.
StdMeanF = ecmnstd(Data,ECMMean,ECMCovar,'fisher')
StdMeanF = 12×1
0.0010
0.0014
0.0010
0.0009
0.0011
0.0013
0.0009
0.0006
0.0009
0.0007
⋮
Calculate standard errors that use the data-generated Hessian matrix (which accounts for the possible loss of information due to missing data) with the option 'hessian'
.
StdMeanH = ecmnstd(Data,ECMMean,ECMCovar,'hessian')
StdMeanH = 12×1
0.0010
0.0014
0.0010
0.0009
0.0011
0.0021
0.0009
0.0006
0.0009
0.0007
⋮
The difference in the standard errors shows the increase in uncertainty of estimation of asset expected returns due to missing data. To view the differences:
Assets
Assets = 1x12 cell
{'AAPL'} {'AMZN'} {'CSCO'} {'DELL'} {'EBAY'} {'GOOG'} {'HPQ'} {'IBM'} {'INTC'} {'MSFT'} {'ORCL'} {'YHOO'}
StdMeanH'
ans = 1×12
0.0010 0.0014 0.0010 0.0009 0.0011 0.0021 0.0009 0.0006 0.0009 0.0007 0.0010 0.0012
StdMeanF'
ans = 1×12
0.0010 0.0014 0.0010 0.0009 0.0011 0.0013 0.0009 0.0006 0.0009 0.0007 0.0010 0.0012
StdMeanH' - StdMeanF'
ans = 1×12
10-3 ×
-0.0000 0.0021 -0.0000 -0.0000 -0.0000 0.7742 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
The two assets with missing data, AMZN and GOOG, are the only assets to have differences due to missing information.
Input Arguments
Data
— Data
matrix
Data, specified as an
NUMSAMPLES
-by-NUMSERIES
matrix with NUMSAMPLES
samples of
a NUMSERIES
-dimensional random
vector. Missing values are indicated by
NaN
s.
Data Types: double
Mean
— Maximum likelihood parameter estimates for mean of Data
vector
Maximum likelihood parameter estimates for the mean of
the Data
using the ECM
algorithm, specified as a
NUMSERIES
-by-1
column vector.
Covariance
— Maximum likelihood parameter estimates for covariance of Data
matrix
Maximum likelihood parameter estimates for the
covariance of the Data
using
the ECM algorithm, specified as a
NUMSERIES
-by-NUMSERIES
matrix.
Method
— Method of estimation for standard error calculations
'hessian'
(default) | character vector
(Optional) Method of estimation for standard error calculations, specified as a character vector. The estimation methods are:
'hessian'
— The Hessian of the observed negative log-likelihood function. This method is recommended since the resultant standard errors incorporate the increase uncertainties due to missing data. In particular, standard errors calculated with the Hessian are generally larger than standard errors calculated with the Fisher information matrix.'fisher'
— The Fisher information matrix.
Data Types: char
Output Arguments
StdMean
— Standard errors of estimates for each element of Mean
vector
vector
Standard errors of estimates for each element of
Mean
vector, returned as a
NUMSERIES
-by-1
column vector.
StdCovar
— Standard errors of estimates for each element of Covariance
matrix
matrix
Standard errors of estimates for each element of
Covariance
matrix, returned
as a
NUMSERIES
-by-NUMSERIES
matrix.
Version History
Introduced before R2006a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other bat365 country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)