Estimate VEC Model Parameters Using egcitest
This example shows how to estimate the parameters of a vector error-correction (VEC) model. Before estimating VEC model parameters, you must determine whether there are any cointegrating relations (see Test for Cointegration Using the Engle-Granger Test). You can estimate the remaining VEC model coefficients using ordinary least squares (OLS).
Following from Test for Cointegration Using the Engle-Granger Test, load the Data_Canada
data set. Run the Engle-Granger cointegration test on the small-term, medium-term, and long-term interest rate series.
load Data_Canada Y = Data(:,3:end); % Interest rate data [~,~,~,~,reg] = egcitest(Y,'test','t2'); c0 = reg.coeff(1); b = reg.coeff(2:3); beta = [1;-b];
Suppose that a model selection procedure indicates the adequacy of q = 2 lags in a VEC(q) model.
Because you estimated c0
and = [1; -b]
previously, you can conditionally estimate , B1
, B2
, and c1
by:
Forming the required lagged differences
Regress the first difference of the series onto the q lagged differences and the estimated cointegration term.
Form the lagged difference series.
q = 2; [numObs,numDims] = size(Y); tBase = (q+2):numObs; % Commensurate time base, all lags T = length(tBase); % Effective sample size YLags = lagmatrix(Y,0:(q+1)); % Y(t-k) on observed time base LY = YLags(tBase,(numDims+1):2*numDims); % Y(t-1) on commensurate time base
Form multidimensional differences so that the numDims
-wide block of columns in DelatYLags
contains (1-L)Y(t-k+1)
.
DeltaYLags = zeros(T,(q+1)*numDims); for k = 1:(q+1) DeltaYLags(:,((k-1)*numDims+1):k*numDims) = ... YLags(tBase,((k-1)*numDims+1):k*numDims) ... - YLags(tBase,(k*numDims+1):(k+1)*numDims); end DY = DeltaYLags(:,1:numDims); % (1-L)Y(t) DLY = DeltaYLags(:,(numDims+1):end); % [(1-L)Y(t-1),...,(1-L)Y(t-q)]
Regress the first difference of the series onto the q lagged differences and the estimated cointegration term. Include an intercept in the regression.
X = [(LY*beta-c0),DLY,ones(T,1)];
P = (X\DY)'; % [alpha,B1,...,Bq,c1]
alpha = P(:,1);
B1 = P(:,2:4);
B2 = P(:,5:7);
c1 = P(:,end);
Display the VEC model coefficients.
alpha,b,c0,B1,B2,c1
alpha = 3×1
-0.6336
0.0595
0.0269
b = 2×1
2.2209
-1.0718
c0 = -1.2393
B1 = 3×3
0.1649 -0.1465 -0.0416
-0.0024 0.3816 -0.3716
0.0815 0.1790 -0.1528
B2 = 3×3
-0.3205 0.9506 -0.9514
-0.1996 0.5169 -0.5211
-0.1751 0.6061 -0.5419
c1 = 3×1
0.1516
0.1508
0.1503