Choosing a Computer to Run MATLAB and Simulink Products
Predicting how MATLAB will perform while running an application on a particular computer is difficult. bat365 offers this general guidance on platform selection criteria and emphasizes that it is not a substitute for testing your application on a particular computer.
Contents
MATLAB performance is similar on Windows®, macOS®, and Linux®, although differences can occur among platforms for the following reasons:
- bat365 builds its products with a different compiler on each platform, and each has its own performance characteristics.
- bat365 incorporates third-party libraries into its products that may perform differently on each platform.
- The operating systems perform differently, especially in the case of disk- or graphics-intensive operations.
In general, performance differences in operating system releases (for example, between Windows 10 and Windows 11) are negligible.
Each component of a typical computer configuration has an impact on MATLAB performance.
Computers with more CPU cores can outperform those with a lower core count, but results will vary with the MATLAB application. MATLAB automatically uses multithreading to exploit the natural parallelism found in many MATLAB applications. But not all MATLAB functions are multithreaded, and the speed-up varies with the algorithm. For additional capability, Parallel Computing Toolbox offers parallel programming constructs that more directly leverage multiple computer cores.
MATLAB performance is dependent on the presence of floating-point hardware. On many CPUs, the number of Floating-Point Units (FPUs) equals the number of CPU cores. However, on some processors, a single FPU may be shared between multiple CPU cores, potentially creating a performance bottleneck.
Virtual cores may modestly improve overall system performance, but they are likely to have little effect on the performance of MATLAB applications. Simultaneous multithreading gives the appearance that a computer has twice as many cores than it actually has. When using a tool such as Windows Task Manager, MATLAB may appear to use only half of the CPU cores available on the computer, when in fact the "unused" half is actually the virtual cores created by hyper-threading.
Your computer can suffer performance degradation due to thrashing when MATLAB and the programs you run concurrently with it use more than the available physical memory and your computer must resort to virtual memory. If, while running a MATLAB application, you find your computer is using little of the CPU, you may be experiencing thrashing. To detect thrashing on a Windows platform, use Windows Performance Monitor. On a Mac, use Activity Monitor.
The hard disk speed is a significant factor in MATLAB start-up time. Once MATLAB is running, disk speed is only a factor if a MATLAB application's performance profile is dominated by file I/O, or if your system is using virtual memory (see Memory section). For disk-intensive MATLAB applications or to improve the start-up time of MATLAB, you can take advantage of technologies such as solid-state drives or RAID.
MATLAB Graphics are rendered using OpenGL technology, so a graphics card with superior OpenGL support can outperform a lesser card. Up-to-date drivers are recommended for the best visual appearance and robustness.
To speed up computation, Parallel Computing Toolbox leverages NVIDIA GPUs with compute capability 3.0 or higher. For releases R2017b and earlier, compute capability 2.0 is sufficient. For releases R2014a and earlier, compute capability 1.3 is sufficient.
See the compute capabilities of all NVIDIA GPUs. MATLAB does not support computation acceleration using AMD or Intel GPUs at this time.
MATLAB provides a built-in benchmarking utility called bench
that provides a general sense of MATLAB performance on a particular computer, but it cannot reliably predict how any particular MATLAB application will run. Use the MATLAB function timeit
to help produce reliable and repeatable performance benchmarks. Use gputimeit
to benchmark GPU code.