Battery SOH and SOC Estimation Using a Hybrid Machine Learning Approach
Mahesh Ghivari, KPIT Technologies Limited
Debango Chakraborty, KPIT Technologies Limited
KPIT developed a hybrid approach to overcome the shortcomings of existing individual methods for SOC and SOH estimation. It combines a battery model and a neural network to predict SOC and then uses the obtained SOC to derive SOH parameters. Deep Learning Toolbox™ and MATLAB® were used to train a feedforward neural network, which was then extensively validated for robustness. The neural network was then incorporated into Simulink® and deployed to a PowerPC-based embedded platform using Embedded Coder® and AUTOSAR Blockset. This workflow has been validated on multiple datasets for LFP and LCO chemistry. It has provided SOC and SOH estimation with improved accuracy well within +- 5% consistently over a different driving cycle range.
Featured Product
Deep Learning Toolbox
Up Next:
Related Videos:
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other bat365 country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)