Simulate, analyze, and test the physical layer of LTE and LTE-Advanced wireless communications systems
LTE Toolbox™ provides standard-compliant functions and apps for the design, simulation, and verification of LTE, LTE-Advanced, and LTE-Advanced Pro communications systems. The system toolbox accelerates LTE algorithm and physical layer (PHY) development, supports golden reference verification and conformance testing, and enables test waveform generation.
With the toolbox you can configure, simulate, measure, and analyze end-to-end communications links. You can also create and reuse a conformance test bench to verify that your designs, prototypes, and implementations comply with the LTE standard.
Using LTE Toolbox with RF instruments or hardware support packages, you can connect transmitter and receiver models to radio devices and verify your designs via over-the-air transmission and reception.
Get Started:
Downlink Processing
Generate downlink physical signals, physical channels, transport channels, and control information.
Uplink Processing
Generate uplink physical signals, physical channels, transport channels, and control information. |
Propagation Channel Models
Characterize and simulate 3D channels, MIMO fading channels (EPA, EVA, and ETU), and moving high-speed train MIMO channels.
Conformance Testing
Perform link-level BER, BLER, and throughput conformance tests. |
LTE RMC
Configure downlink and uplink reference measurement channels.
Measurements
Perform uplink and downlink measurements, including EVM, ACLR, and in-band emissions. |
UMTS RMC
Build UMTS reference measurement channel (RMC) configuration structures and generate UMTS waveforms. |
Downlink and Uplink Receivers
Perform LTE downlink and uplink operations, including frame synchronization, frequency offset, frequency correction, channel estimation, and zero-forcing and MMSE-based equalization.
Signal Recovery Procedures
Model UE detection, cell identity search, MIB decoding, and SIB1 recovery. |
NB-IoT
Model narrowband Internet-of-Things (NB-IoT) uplink and downlink transport and physical signals.
LTE-M
Model the Release 13 (Cat-M1) and Release 14 (Cat-M2) LTE-M uplink and downlink transport and physical signals. |
D2D
Model sidelink transmission and reception for ProSe direct communications.
C-V2X
Model LTE Release 14 vehicle-to-vehicle wireless communications. |
Over-the-Air Transmission
Transmit LTE waveforms from MATLAB using RF instruments or software-defined radios (SDR).
Over-the-Air Reception
Acquire and analyze over-the-air received signals in MATLAB using RF instruments or software-defined radios.
Physical Layer Subcomponents
Use low-level downlink and uplink physical layer functions as a golden reference for implementations of your LTE designs.