LTE Toolbox

 

LTE Toolbox

Simulate, analyze, and test the physical layer of LTE and LTE-Advanced wireless communications systems

Get Started:

Waveform Generation

Generate standard-compliant LTE, LTE-Advanced, and LTE-Advanced Pro waveforms. Configure and create various downlink, uplink and channels and signals.

LTE downlink waveforms with transport & physical channels.

LTE downlink waveforms with transport and physical channels.

Uplink Processing

Generate uplink physical signals, physical channels, transport channels, and control information.

LTE uplink waveforms including SRS and PUCCH.

LTE uplink waveforms including SRS and PUCCH.

Link-Level Simulation

Model end-to-end communication links. Perform waveform generation, channel modeling, and receiver operations. Compute BER, BLER, throughput, and conformance tests.

Propagation Channel Models

Characterize and simulate 3D channels, MIMO fading channels (EPA, EVA, and ETU), and moving high-speed train MIMO channels.

Simulate propagation channels.

Simulating propagation channels.

Test and Measurement

Build test models (E-TM) and reference measurement channels (RMC) for LTE, LTE-A, and UMTS waveforms.

LTE RMC

Configure downlink and uplink reference measurement channels.

Generate preconfigured LTE downlink RMC waveforms.

Generating preconfigured LTE downlink RMC waveforms.

LTE EVM and in-band emissions measurements.

LTE EVM and in-band emissions measurements.

UMTS RMC

Build UMTS reference measurement channel (RMC) configuration structures and generate UMTS waveforms.

UMTS downlink RMCs and waveforms.

UMTS downlink RMCs and waveforms.

Signal Recovery

Recover signal information, including receiver operations, identification, and initial cell search details.

Downlink and Uplink Receivers

Perform LTE downlink and uplink operations, including frame synchronization, frequency offset, frequency correction, channel estimation, and zero-forcing and MMSE-based equalization.

LTE Downlink Channel Estimation and Equalization

LTE downlink channel estimation and equalization.

Signal Recovery Procedures

Model UE detection, cell identity search, MIB decoding, and SIB1 recovery.

Cell search, MIB, and SIB1 recovery.

Cell search, MIB, and SIB1 recovery.

NB-IoT and LTE-M

Explore machine-to-machine (M2M) applications for the Internet-of-Things (IoT).

LTE-M

Model the Release 13 (Cat-M1) and Release 14 (Cat-M2) LTE-M uplink and downlink transport and physical signals.

LTE-M uplink waveform generation.

LTE-M uplink waveform generation.

Sidelink D2D and C-V2X

Explore device-to-device (D2D) and cellular vehicular communications (C-V2X) LTE applications.

Radio Connectivity

Connect your transmitter and receiver models to radio devices, and verify your designs via over-the-air transmission and reception.

Transmit LTE signals using Analog Devices AD936x SDR.

Transmitting LTE signals using Analog Devices AD936x SDR.

Design Verification

Use detailed MATLAB code from specialized toolboxes to verify that each individual component of the LTE transceiver is correctly implemented.

Physical Layer Subcomponents

Use low-level downlink and uplink physical layer functions as a golden reference for implementations of your LTE designs.

LTE DL-SCH and PDSCH processing chain.

LTE DL-SCH and PDSCH processing chain.